Scientific Consensus on

Maintaining Humanity’s Life Support Systems in the 21st Century

Information for Policy Makers
Contents

ESSENTIAL POINTS FOR POLICY MAKERS ii
One-Page Executive Summary

OVERVIEW OF THE FIVE KEY PROBLEMS iii
One-Page Overview of Problems and Broad-Brush Solutions

Preface: Purpose of this Consensus Statement 1

Background Information: Dangerous Trends in our Life Support Systems 2

Rising to the Challenge .. 3

- Climate Disruption ... 4
- Extinctions ... 7
- Ecosystem Transformation .. 11
- Pollution ... 14
- Population Growth and Resource Consumption 16
- Interactions ... 19

Cited Supporting Studies .. 21

Some Other Relevant Reports ... 26

LIST OF SUPPORTING-SCIENTIST SIGNATURES 27
Earth is rapidly approaching a tipping point. Human impacts are causing alarming levels of harm to our planet. As scientists who study the interaction of people with the rest of the biosphere using a wide range of approaches, we agree that the evidence that humans are damaging their ecological life-support systems is overwhelming.

We further agree that, based on the best scientific information available, human quality of life will suffer substantial degradation by the year 2050 if we continue on our current path. Science unequivocally demonstrates the human impacts of key concern:

- **Climate disruption** — more, faster climate change than since humans first became a species
- **Extinctions** — not since the dinosaurs went extinct have so many species and populations died out so fast, both on land and in the oceans.
- **Wholesale loss of diverse ecosystems** — we have plowed, paved, or otherwise transformed more than 40% of Earth’s ice-free land, and no place on land or in the sea is free of our direct or indirect influences.
- **Pollution** — environmental contaminants in the air, water and land are at record levels and increasing, seriously harming people and wildlife in unforeseen ways.
- **Human population growth and consumption patterns** — seven billion people alive today will likely grow to 9.5 billion by 2050, and the pressures of heavy material consumption among the middle class and wealthy may well intensify.

By the time today’s children reach middle age, it is extremely likely that Earth’s life-support systems, critical for human prosperity and existence, will be irretrievably damaged by the magnitude, global extent, and combination of these human-caused environmental stressors, unless we take concrete, immediate actions to ensure a sustainable, high-quality future.

As members of the scientific community actively involved in assessing the biological and societal impacts of global change, we are sounding this alarm to the world. For humanity’s continued health and prosperity, we all — individuals, businesses, political leaders, religious leaders, scientists, and people in every walk of life — must work hard to solve these five global problems, starting today:

1. Climate Disruption
2. Extinctions
3. Loss of Ecosystem Diversity
4. Pollution
5. Human Population Growth and Resource Consumption
Overview of Problems and Broad-Brush Solutions

Climate Disruption
Reduce effects of climate disruption by decreasing greenhouse gas emissions, and by implementing adaptation strategies to deal with the consequences of climate change already underway. Viable approaches include accelerating development and deployment of carbon-neutral energy technologies to replace fossil fuels; making buildings, transportation, manufacturing systems, and settlement patterns more energy-efficient; and conserving forests and regulating land conversion to maximize carbon sequestration. Adapting to the inevitable effects of climate change will be crucial for coastal areas threatened by sea-level rise; ensuring adequate water supplies to many major population centers; maintaining agricultural productivity; and for managing biodiversity and ecosystem reserves.

Extinctions
Slow the very high extinction rates that are leading to a global loss of biodiversity. Viable approaches include assigning economic valuation to the ways natural ecosystems contribute to human well-being and managing all ecosystems, both in human-dominated regions and in regions far from direct human influence, to sustain and enhance biodiversity and ecosystem services. It will be critical to develop cross-jurisdictional cooperation to recognize and mitigate the interactions of global pressures (for example, climate change, ocean acidification) and local pressures (land transformation, overfishing, poaching endangered species, etc.).

Ecosystem Transformation
Minimize transformation of Earth’s remaining natural ecosystems into farms, suburbs, and other human constructs. Viable agricultural approaches include increasing efficiency in existing food-producing areas; improving food-distribution systems; and decreasing waste. Viable development approaches include enhancing urban landscapes to accommodate growth rather than encouraging suburban sprawl; siting infrastructure to minimize impacts on natural ecosystems; and investing in vital ‘green infrastructure,’ such as through restoring wetlands, oyster reefs, and forests to secure water quality, flood control, and boost access to recreational benefits.

Pollution
Curb the manufacture and release of toxic substances into the environment. Viable approaches include using current science about the molecular mechanisms of toxicity and applying the precautionary principle (verification of no harmful effects) to guide regulation of existing chemicals and design of new ones. We have the knowledge and ability to develop a new generation of materials that are inherently far safer than what is available today.

Population Growth and Consumption
Bring world population growth to an end as early as possible and begin a gradual decline. An achievable target is no more than 8.5 billion people by 2050 and a peak population size of no more than 9 billion, which through natural demographic processes can decrease to less than 7 billion by 2100. Viable approaches include ensuring that everyone has access to education, economic opportunities, and health care, including family planning services, with a special focus on women’s rights.

Decrease per-capita resource use, particularly in developed countries. Viable approaches include improving efficiency in production, acquisition, trade, and use of goods and promoting environmentally-friendly changes in consumer behavior.

Overall, we urge the use of the best science available to anticipate most-likely, worst-case, and best-case scenarios for 50 years into the future, in order to emplace policies that guide for environmental health over the long-term as well as adapting to immediate crises.
Since about 1950, the world has been changing faster, and to a greater extent, than it has in the past 12,000 years. Balancing the positive changes against the negative ones will be the key challenge of the 21st century.

Positive change has included the Green Revolution, which reduced world hunger (although 1 in 8 people still do not have enough to eat); new medical breakthroughs that have reduced infant and childhood mortality and allow people to live longer and more productive lives; access to myriad goods and services that increase wealth and comfort levels; and new technological breakthroughs, such as computers, cell phones, and the internet, that now connect billions of people throughout the world into a potential global brain.

In contrast, other changes, all interacting with each other, are leading humanity in dangerous directions: climate disruption, extinction of biodiversity, wholesale loss of vast ecosystems, pollution, and ever-increasing numbers of people competing for the planet’s resources. Until now, these have often been viewed as “necessary evils” for progress, or collateral damage that, while unfortunate, would not ultimately stand in the way of serving the needs of people.

Several recent comprehensive reports by the scientific community, however, have now shown otherwise. Rather than simply being inconveniences, the accelerating trends of climate disruption, extinction, ecosystem loss, pollution, and human population growth in fact are threatening the life-support systems upon which we all depend for continuing the high quality of life that many people already enjoy and to which many others aspire.

The vast majority of scientists who study the interactions between people and the rest of the biosphere agree on a key conclusion: that the five interconnected dangerous trends listed above are having detrimental effects, and if continued, the already-apparent negative impacts on human quality of life will become much worse within a few decades. The multitude of sound scientific evidence to substantiate this has been summarized in many recent position papers and consensus statements (a few samples are listed on pp. 25-26), and documented in thousands of articles in the peer-reviewed scientific literature. However, the position papers and consensus statements typically focus only on a subset of the five key issues (for example, climate change, or biodiversity loss, or pollution), and access to the peer-reviewed literature is often difficult for non-scientists. As a result, policy makers faced with making critical decisions can find it cumbersome both to locate the pertinent information and to digest the thousands of pages through which it is distributed.

Here we provide a summary intended to:

Be useful to policy makers and others who need to understand the most serious environmental-health issues that affect both local constituencies and the entire planet.

Clearly voice the consensus of most scientists who study these issues that:

Climate disruption, extinction, ecosystem loss, pollution, and population growth are serious threats to humanity’s well-being and societal stability; and

These five major threats do not operate independently of each other.

We also outline broad-brush actions that, from a scientific perspective, will be required to mitigate the threats. The intent is to provide information that will be necessary and useful if the desire of the general public, governments, and businesses is to maximize the chance that the world of our children and grandchildren will be at least as good as the one in which we live now.
People have basic needs for food, water, health, and a place to live, and additionally have to produce energy and other products from natural resources to maintain standards of living that each culture considers adequate. Fulfilling all of these needs for all people is not possible in the absence of a healthy, well-functioning global ecosystem. The “global ecosystem” is basically the complex ways that all life forms on Earth — including us — interact with each other and with their physical environment (water, soil, air, and so on). The total of all those myriad interactions compose the planet’s, and our, life support systems.

Humans have been an integral part of the global ecosystem since we first evolved; now we have become the dominant species in it. As such, we strongly influence how Earth’s life support systems work, in both positive and negative ways. A key challenge in the coming decades is to ensure that the negative influences do not outweigh the positive ones, which would make the world a worse place to live. Robust scientific evidence confirms that five interconnected negative trends of major concern have emerged over the past several decades:

- **Disrupting the climate** that we and other species depend upon.
- **Triggering a mass extinction** of biodiversity.
- **Destroying diverse ecosystems** in ways that damage our basic life support systems.
- **Polluting our land, water, and air** with harmful contaminants that undermine basic biological processes, impose severe health costs, and undermine our ability to deal with other problems.
- **Increasing human population** rapidly while relying on old patterns of production and consumption.

These five trends interact with and exacerbate each other, such that the total impact becomes worse than the simple sum of their parts.

Ensuring a future for our children and grandchildren that is at least as desirable as the life we live now will require accepting that we have already inadvertently pushed the global ecosystem in dangerous directions, and that we have the knowledge and power to steer it back on course — if we act now. Waiting longer will only make it harder, if not impossible, to be successful, and will inflict substantial, escalating costs in both monetary terms and human suffering.

The following pages summarize the causes of each of the five dangerous trends, why their continuation will harm humanity, how they interact to magnify undesirable impacts, and broad-brush solutions necessary to move the human race toward a sustainable, enjoyable future.
Defusing the five global crises summarized on the following pages will not be easy, but past experience demonstrates that problems of this huge scale are indeed solvable — if humanity is ready to rise to the challenge. Solutions will require the same things that worked successfully in dealing with past global crises: individual initiative, cooperation both within and across national boundaries, technological advances, and emplacing new infrastructure. Individual initiative has seldom been in short supply and continues to be a powerful human resource. Successful global-through-local cooperation resulted in ending World War II and rebuilding afterwards; banning use of nuclear weapons; dramatically increasing global food production with the Green Revolution and averting food crises through United Nations initiatives; greatly reducing the use of persistent toxic chemicals like DDT; reversing stratospheric ozone depletion (the “ozone hole”); and diminishing infectious diseases such as malaria and polio worldwide.

Likewise, past technological advances and the building of new infrastructure have been remarkable and commensurate in scale with what is needed to fix today’s problems. For instance, in just seven years, responding to demands of World War II, the United States built its airplane fleet from about 3100 to 300,000 planes, and beginning in the 1950s, took less than 50 years to build 47,000 miles (75,639 km) of interstate highways — enough paved roads to encircle Earth almost twice. Over about the same time, 60% of the world’s largest rivers were re-plumbed with dams. In about 30 years, the world went from typewriters and postage stamps to hand-held computers and the internet, now linking a third of the world’s population. During the same time we leapfrogged from about 310 million dial-up, landline phones to 6 billion mobile phones networked by satellites and presently connecting an estimated 3.2 billion people.

In the context of such past successes, the current problems of climate disruption, extinction, ecosystem loss, pollution, and growing human population and consumption are not too big to solve in the coming 30 to 50 years. Indeed, the scientific, technological, and entrepreneurial pieces are in place, and encouraging initiatives and agreements have begun to emerge at international, national, state, and local levels. Moreover, today’s global connectivity is unprecedented in the history of the world, offering the new opportunity for most of the human population to learn of global problems and to help coordinate solutions.

Three key lessons emerge from the examples given above. The first is that global-scale problems must be acknowledged before they can be solved. The second is that fixing them is imminently possible through ‘win-win’ interactions between local communities, where solutions are actually developed and always emplaced, and higher levels of government, which define priorities backed by clear incentives. The third very important lesson is that big problems cannot be fixed overnight. Given inherent lag times in changing climate, building infrastructure, changing societal norms, and slowing population growth, actions taken today will only begin to bear full fruit in a few decades. If, for example, we move most of the way towards a carbon-neutral energy system by 2035, climate still will not stabilize before 2100, and it will still be a different climate than we are used to now. But, if we delay action to 2035, not only will climate disruption continue to worsen, but efforts at mitigation and adaptation will cost dramatically more; climate would not stabilize until well after the year 2100, and when it did, it would be at an average climate state that is far more disruptive to society than would have been the case if we had acted earlier. Similar costs of delay accrue for the other problems as well; indeed, delaying action on those problems will lead to irretrievable losses of species, ecosystems, and human health and prosperity. Starting today to diffuse the global crises we now face is therefore crucial.
It is now clear that people are changing Earth’s climate by adding greenhouse gases to the atmosphere primarily through the burning of coal, oil (and its by-products like gasoline, diesel, etc.), and natural gas. The overall trend, still continuing, has been to raise the average temperature of the planet over the course of the last century, and especially the last 60 years. Raising average global temperature causes local changes in temperature, in amount and timing of rainfall and snowfall, in length and character of seasons, and in the frequency of extreme storms, floods, droughts, and wildfires. Sea-level rise is a particular concern in coastal areas. Such impacts directly influence the wellbeing of people through damaging their livelihoods, property, and health, and indirectly through increasing potentials for societal conflict. Recent examples include the flooding from superstorm Sandy on the east coast of the United States, record wildfires and drought throughout the western United States and Australia, heat waves and drought in Europe, and floods in Pakistan, all of which occurred in 2012 and 2013.

CAUSES FOR CONCERN

Even best-case emissions scenarios (the IPCC B1 scenario) project that Earth will be hotter than the human species has ever seen by the year 2070, possibly sooner. Continuing current emission trends would, by the time today’s children grow up and have grandchildren (the year 2100), cause average global temperature to rise between 4.3-11.5°F (2.4-6.4°C), with the best estimate being 7.2°F (4°C). The last time average global temperature was 7.2°F hotter was some 14 million years ago. The last time it was 11.5°F hotter was about 38 million years ago.

Impacts that would be detrimental to humanity by 2100, if not before, should greenhouse gas emissions continue at their present pace, include the following.

Longer and more intense heat waves. The 1-in-20 year hottest day is likely to become a 1-in-2 year event by the end of the 21st century in most regions. Such effects already are being observed — in 2013, temperatures in Australia rose so much that weather maps had to add two new colors to express the new hot extremes. Some models indicate that the current trajectory of warming, if continued to the year 2100, would cause some areas where people now live to be too hot for humans to survive.

a The term “likely” in this context implies that there is a 66-100% chance of the effect occurring. Usage here follows definitions explained in IPCC publications. See reference 1 and 2.

b For the IPCC A1B and A2 emissions scenarios, see reference 2.
More frequent damaging storms. The 1-in-20 year annual maximum daily precipitation amount is likelyc to become a 1-in-5 to 1-in-15 year event by the end of the 21st century in many regions1. Cyclone wind speeds are likelyd to increase. Cities would experience the extent of damage caused by superstorm Sandy on a more frequent basis.

Major damage to coastal cities as sea level rises. The extent of sea-level rise will depend in part on how fast glaciers melt. Low-end projections3 call for a rise in sea level of 0.6-1.9 feet (0.18 to 0.59 meter) by 2100; high-end projections suggest seas rising as high as 2.6-13.1 feet (0.8-4.0 meters)3,4,9. Raising sea level to even the lower estimates would flood large parts of major cities worldwide and force the permanent resettlement of millions of people; about 100 million people now live less than 3.3 feet (1 meter) above mean sea level12.

Water shortages in populous parts of the world. Cities and farmlands that rely on the seasonal accumulation of snow pack and slow spring melt, arid regions that apportion water from major rivers, and regions that depend on water from glacier melt all are at risk12.

Local reduction of crop yields. New climate patterns will change which crops can be grown in which areas. Some regions are projected to experience overall declines: for instance, cereal crop production is expected to fall in areas that now have the highest population density and/or the most undernourished people, notably most of Africa and India12. Key crop-growing areas, such as California, which provides half of the fruits, nuts, and vegetables for the United States, will experience uneven effects across crops, requiring farmers to adapt rapidly to changing what they plant13,14.

Economic losses, social strife and political unrest. Damage to coastal areas, flooding of ports, water shortages, adverse weather and shifts in crop-growing areas, creation of new shipping lanes, and competition for newly accessible arctic resources all will complicate national and international relations, and cost billions of dollars9,10,14,15. For instance, the New York Times reportedd that by the first months of 2013, United States taxpayers had already paid $7 billion to subsidize farmers for crops that failed because of extreme drought, and that figure is anticipated to rise as high as $16 billion.

Spread of infectious disease. As temperate regions warm, costly and debilitating mosquito-borne diseases such as malaria are expected to increase in both developed and developing nations16. Indeed, expansion of West Nile virus into the United States beginning in 1999 has already occurred, and bluetongue virus, a costly livestock disease carried by midges, has expanded northward into central and northern Europe in the past decade. Besides human suffering, the human-health costs caused by climate change are anticipated to be $2-4 billion per year by 203016.

Pest expansions that cause severe ecological and economic losses. For example, over the past two decades, millions of acres of western North American forests have been killed by pine beetles whose populations have exploded as a result of warmer winter temperatures — previously, extreme winter cold prevented abundant beetle survival17. The beetle kill reduces wood production and sales, and lowers property values in developed areas.

Major damage to unique ecosystems. Warming and acidification of ocean water is expected to destroy a large portion of the world’s coral reefs, essentially the “rainforests of the sea”, so-called because they host most of the oceans’ biodiversity9,18. On land, forests worldwide face drought-induced decline, both in dry and wet regions19. This is especially problematic in many tropical and subtropical forests20, which are the cradles of most terrestrial biodiversity.

c For the IPCC B1, A1B, and A2 emissions scenarios, see reference 2.

d Ron Nixon, January 15, 2013, Record taxpayer cost is seen for crop insurance, New York Times.
Extinction of species. Currently at least 20-40% of assessed species — amounting to a minimum of 12,000-24,000 species — are possibly at increased risk of extinction if mean global temperature increases 2.7-4.5°F (1.5-2.5°C)\(^1,\(^{12}\). Current emissions trends are on track for a 7.2°F (4°C) rise in global mean temperature by 2100, which would put many more species at risk\(^9\). The situation with population extinctions is much worse, with much higher extinction rates in the basic unit of biodiversity that supplies ecosystem services\(^21\).

SOLUTIONS

Avoiding the worst impacts of human-caused climate change will require reducing emissions of greenhouse gases substantially\(^6,\(^9\) and quickly\(^22\). For instance, in order to stabilize atmospheric concentrations of CO\(_2\) at 450 parts per million by the year 2050, which would give a 50% chance of holding global temperature rise to 2°C, emissions would have to be decreased 5.1% per year for the next 38 years. This rate of reduction has not been achieved in any year in the past six decades, which puts the magnitude and urgency of the task in perspective\(^6\).

However, reducing emissions to requisite values over the next 50 years appears possible through coordinated innovation and deployment of new transportation and energy systems, which can be accomplished largely with existing technology\(^23,\(^26\). This will require rapid scaling-up of carbon-neutral energy production (solar, wind, hydro, geothermal, hydrogen fuel-cells, nuclear, microbe-based biofuels) to replace energy production from fossil fuels. In the transitional decades when fossil fuels will continue to be in widespread use, increased efficiency in energy use (better gas mileage for cars and trucks, more energy-efficient buildings, etc.) will be necessary, as will phasing out coal-fired power plants in favor of lower-emissions facilities (natural gas). While fossil fuels remain in use during the transitional period, carbon capture and storage (CCS) from major emitters like cement and steel plants will probably be necessary. Scaling up carbon-neutral energy production fast enough will likely require legislation and government policies designed to stimulate the right kinds of innovations and realign the economic landscape for energy production\(^24,\(^27\).

Some effects of climate change already are underway (sea level rise, higher frequency of extreme weather, etc.). Plans to adapt to unavoidable climate changes will need to be developed and implemented for cities and public lands. Keeping agricultural areas productive will require changing the crops grown in some places, and ensuring seed stocks that are adapted to new climates. Ultimate monetary costs for climate mitigation and adaptation grow substantially each year action is postponed\(^13,\(^22\).

“The world needs another industrial revolution in which our sources of energy are affordable, accessible and sustainable. Energy efficiency and conservation, as well as decarbonizing our energy sources, are essential to this revolution.”

S. Chu and A. Majumdar, 2012, ref. 24
Biological extinctions cannot be reversed and therefore are a particularly destructive kind of global change. Even the most conservative analyses indicate that human-caused extinction of other species is now proceeding at rates that are 3-80 times faster than the extinction rate that prevailed before people were abundant on Earth\(^28\), and other estimates are much higher\(^{29-32}\). If the current rate of extinction is not slowed for species and their constituent populations, then within as little as three centuries the world would see the loss of 75% of vertebrate species (mammals, birds, reptiles, amphibians, and fish), as well as loss of many species of other kinds of animals and plants\(^{28}\). Earth has not seen that magnitude of extinction since an asteroid hit the planet 65 million years ago, killing the dinosaurs and many other species. Only five times in the 540 million years since complex life forms dominated Earth have mass extinctions occurred at the scale of what current extinction rates would produce; those mass extinctions killed an estimated 75%-96% of the species known to be living at the time.

Currently, sound scientific criteria document that at least 23,000 species are threatened with extinction, including 22% of mammal species, 14% of birds, 29% of evaluated reptiles, as many as 43% of amphibians, 29% of evaluated fish, 26% of evaluated invertebrate animals, and 23% of plants\(^{33-35}\). Populations—groups of interacting individuals that are the building blocks of species—are dying off at an even faster rate than species. The extinction of local populations, in fact, represents the strongest pulse of contemporary biological extinction. For example, since 1970 some 30% of all vertebrate populations have died out\(^{36}\), and most species have experienced loss of connectivity between populations because of human-caused habitat fragmentation. Healthy species are composed of many, interconnected populations; rapid population loss, and loss of connectivity between populations, are thus early warning signs of eventual species extinction.

CAUSES FOR CONCERN

The world’s plants, animals, fungi, and microbes are the working parts of Earth’s life-support systems. Losing them imposes direct economic losses, lessens the effectiveness of nature to serve our needs (“ecosystem services,” see next page), and carries significant emotional and moral costs.

Economic losses. At least 40% of the world’s economy and 80% of the needs of the poor are derived from biological resources\(^{12}\). In the United States, for example, commercial fisheries, some of which rely on species in which the majority of populations have already gone extinct, provide approximately one million jobs and $32 billion in income annually\(^{37}\). Internationally, ecotourism, driven largely by the opportunity to view currently threatened species like elephants, lions, and cheetahs, supplies 14% of Kenya’s GDP (in 2013)\(^{38}\) and 13% of Tanzania’s (in 2001)\(^{39}\), and in the Galapagos Islands, ecotourism contributed 68% of the 78% growth in GDP that took place from 1999-2005\(^{40}\). Local economies in the United States also rely on revenues generated by ecotourism linked to wildlife resources: for example, in the year 2010 visitors to Yellowstone National Park, which attracts a substantial number of tourists lured by the prospect of seeing wolves and grizzly bears, generated $334 million and created more than 4,800 jobs for the surrounding communities\(^{41}\). In 2009, visitors to Yosemite National Park created 4,597 jobs in the area, and generated $408 million in sales revenues, $130 million in labor income, and $226 million in value added\(^{42}\).
Loss of basic services in many communities. Around the world, indigenous and rural communities depend on the populations of more than 25,000 species for food, medicine, and shelter.

Loss of ecosystem services. Extinctions irreversibly decrease biodiversity, which in turn directly costs society through loss of ecosystem services. “Ecosystem services” (see the box) are attributes of ecological systems that serve people. Among the ecosystem services that support human life and endeavors are: moderating weather; regulating the water cycle, stabilizing water supplies; filtering drinking water; protecting agricultural soils and replenishing their nutrients; disposing of wastes; pollinating crops and wild plants; providing food from wild species (especially seafood); stabilizing fisheries; providing medicines and pharmaceuticals; controlling spread of pathogens; and helping to reduce greenhouse gases in the atmosphere. In contrast to such directly quantifiable benefits promoted by high biodiversity, reducing biodiversity generally reduces the productivity of ecosystems, reduces their stability, and makes them prone to rapidly changing in ways that are clearly detrimental to humanity.

Intangible values. Continuing extinction at the present pace would considerably degrade quality of life for hundreds of millions of people who find emotional and aesthetic value in the presence of iconic species in natural habitats. In this context species are priceless, in the sense of being infinitely valuable. An apt metaphor is a Rembrandt or other unique work of art that evokes exceptional human feelings, and whose loss would be generally recognized as making humanity poorer.

The world’s ecosystems are Natural Capital that provides vital benefits called Ecosystem Services necessary for:

- Production of goods (crops, timber, seafood)
- Life-support systems (provision and purification of water, buffering against storms, floods, and droughts)
- Life-fulfilling amenities (beauty, opportunity for recreation, and the associated physical and mental health benefits)
- Options (genetic diversity for future use in agriculture, energy, pharmaceuticals and other industries)

Modified from G. Daily et al., 2000, ref. 46

CHIEF DRIVERS OF EXTINCTION

The main drivers of human-caused extinction are:

Habitat destruction from ecosystem transformation. Such practices as unsustainable forestry and conversion of land to agriculture, suburban sprawl, and roads, all cause both habitat destruction and habitat fragmentation. In particular, logging and clearing of tropical rainforests for ranching or farming permanently destroys the habitats for vast numbers of species. Such areas are among the most important reservoirs of terrestrial biodiversity, harboring thousands of unique
species and plant and animal functional groups (ecological niches) found nowhere else. In the oceans, habitat destruction and fragmentation results from pollution, trawling, shipping traffic, and shipping noise (sonar, etc.).

Environmental contamination. Environmental contamination from human-made chemicals contributes to extinction pressures by destroying habitats (for instance, mine dumps, oil spills and agricultural runoff), by direct toxic effects of pollutants, and through subtle effects on animals’ immune and reproductive systems.

Climate change. Extinctions result when species cannot move fast enough to find climatic refuges as the climate becomes unsuitable where they now live; when climate changes such that it exceeds their physiological, developmental, or evolutionary tolerances; or when critical species interactions (the way one species depends on the next) are disrupted. On land, models predict that by the year 2100, between 12% and 39% of the planet will have developed climates that no living species has ever experienced, and conversely, the climate that many species currently live in will disappear from 10% to 48% of Earth’s surface. These changes will be most pronounced in areas that currently harbor most of the world’s biodiversity. In the oceans, acidification, a by-product of climate change that disrupts growth and development of marine organisms, is of particular concern, because it prevents marine shelly animals such as clams and oysters from building their shell, and causes collapse of the physical reef infrastructure on which most marine species ultimately depend.

Intensive exploitation of wild species for profit. Some iconic species, such as elephants, rhinoceroses, and tigers are being hunted to extinction to sell their tusks, horns, or other body parts to be made into curios or for purported health products. For example, the demand for ivory from elephant tusks, primarily from Asian markets, has driven the price high enough that elephant poaching has now become a lucrative source of income for international crime rings and terrorist organizations. Other species are being over-utilized as marketable food—this is especially a problem for many ocean fisheries, such as those for Bluefin tuna and Atlantic cod. Demand is outstripping supply for such species—there are now seven times as many humans on the planet as there are wild salmon. In the same vein, the dramatic and rapid clearing of rainforests is motivated by immediate economic profit. In all of these cases, the one-time gain in profit (which benefits relatively few people) is a pittance compared to the loss of natural capital, which supplies important benefits locally and globally for the long term. In economic terms, it is analogous to spending down the principal of an investment rather than living off the interest.

If current rates of elephant poaching continue, there would be no more wild elephants on Earth within 20-30 years. The bulk of the short-term profits go to organized crime and terrorist groups. In contrast, revenues from ecotourism are sustainable for the long run and contribute directly to local economies.

* This assumes continuation of the annual rate of about 25,000 elephants killed in 2011, and a world population of between 420,000-650,000 African elephants plus about 50,000 Asian elephants.
SOLUTIONS

Because species losses accrue from global pressures, and species and ecosystem distributions transcend political boundaries, solutions to the extinction crisis require coordination between local actions, national laws, and international agreements, as well as strict enforcement of policies35,55. Such a multi-jurisdictional approach is essential to prevent illegal trafficking in wildlife products; enhance protection of species in public reserves; and develop effective policies to ensure sustainable fisheries35. Management plans for individual species, as well as for public lands and marine protected areas, will need to include adaptation to climate change5,9,28,35,56. Assessment of species risks will need to be accelerated33, particularly for invertebrate species34 and fish.

In addition, it will be necessary to address the root causes of climate change and unnecessary ecosystem transformation (see those sections of this consensus statement, pp. 4 and 11). An important part of the solution will be economic valuation of natural capital and ecosystem services, such that global, regional, and local economies account for the benefits of banking natural capital for the long run, rather than irretrievably depleting finite species resources for short-term economic gain44,57. Workable examples already exist in China, where 120 million farmers are being paid to farm in ways that not only yield crops and timber but also stabilize steep slopes, control floods, and maintain biodiversity44; in Costa Rica46, where a national payment system for ecosystem services has helped to change deforestation rates from among the highest in the world to among the lowest; and in New York City, where maintaining natural landscapes for water filtration is more economical than building filtration plants57.

“Many actions in support of biodiversity have had significant and measurable results in particular areas and amongst targeted species and ecosystems. This suggests that with adequate resources and political will, the tools exist for loss of biodiversity to be reduced at wider scales.”

Global Biodiversity Outlook 3, ref. 35
As humans have become more abundant, we have transformed large parts of the Earth’s surface from their pre-human “natural” state into entirely different landscapes and seascapes. Some of these transformations have been necessary to support basic human needs; others have been inadvertent and unanticipated.

As of 2012, somewhat more than 41% of Earth’s ice-free lands (36% of total land surface) have been commandeered for farms, ranches, logging, cities, suburbs, roads, and other human constructs. This equates to an average of a little less than 2 acres of transformed land for each person on Earth. Conversion for agriculture accounts for most of the landscape change, with crops covering about 12% and pastureland about 26% of ice-free land (the percentages are about 10% and 22%, respectively, for the proportion of all Earth's land). Urban lands account for another 3%. On top of that are vast road networks that fragment habitats across some 50% of the entire land surface, dams that modify water flow in more than 60% of the world’s large rivers and in many smaller ones, and continuing deforestation that has been proceeding at the rate of about 30,000 square kilometers (=11,000 square miles) per year for the past 16 years. This per-year loss is roughly the equivalent of clear-cutting the entire country of Belgium or in the United States, the states of Massachusetts or Hawaii in one year.

Measuring the percentage of the oceans that have been transformed is much more challenging, but it is clear that pollution, trawling, and ship traffic and noise have caused major changes along most of the world’s coastlines. For example, bottom trawling alone has been estimated to annually destroy an area almost half of Earth’s ice-free land has already been changed completely by human activities. Nowhere on the land or in the sea is completely free of human influence.
of seabed equivalent to twice the area of the continental United States66. Human debris, particularly plastics, also is ubiquitous in ocean waters, even far offshore67.

The human footprint extends even outside of the ecosystems that have been transformed wholesale by people. Nearly every terrestrial ecosystem in the world now integrates at least a few species that ultimately were introduced by human activities68-70, sometimes with devastating losses in ecosystem services71, and invasive species now number in the hundreds in most major marine ports72,73 and in the thousands on most continents70,74,75. All told, 83\% of the entire land surface exhibits human impact defined as influenced by at least one of the following factors: human population density greater than 1 person per square kilometer (=1 person per 0.4 square miles, or 247 acres); agricultural activity; built-up areas or settlements; being within 15 kilometers (9.3 miles) of a road or coastline; or nighttime light bright enough to be detected by satellites76,77. Adding in the effect of climate change, every place on Earth exhibits at least some human impact, even the most remote parts of the land and oceans78.

CAUSES FOR CONCERN

There are two conflicting concerns with respect to ecosystem transformation.

The need to minimize the human footprint to prevent extinction of other species and degradation of essential ecosystem services. Ecological “tipping points,” where whole ecosystems change suddenly and unexpectedly to become less biodiverse and in many cases less productive79, are known to be triggered by transforming threshold percentages of their areas. Many studies document that when 50\% to 90\% of patches within a landscape are disturbed, the remaining undisturbed patches undergo rapid, irreversible changes as well5,80-83. Therefore, wholesale ecological transformation of more than half of Earth’s ecosystems by direct human impacts is prone to trigger unanticipated, irreversible degradation even in ecosystems that are not directly utilized by humans. Such changes already are becoming evident in nitrogen deposition in remote arctic lakes84, by dwindling populations of once-common species in some nature reserves85, by millions of acres of beetle-killed forests17, and by invasive species such as zebra mussels70,71.

“Cities, regions, or countries that are not able to provide a high quality of life on a low [Ecological] Footprint will be at a disadvantage in a resource-constrained future.”

B. Ewing et al., 2010, ref. 77

The need to feed, house, and provide acceptably high standards of living for the seven billion people that are now on the planet plus 2.5 billion more that probably will be added over the next three decades86,87 means that the demands for land use will accelerate (see p. 16, the Population Growth section, for more details on this). Nearly 70\% of the arable land that has not yet been converted to agricultural use is in tropical grasslands and forests, which include some of the world’s most important biodiversity reservoirs and so far are among the lands least impacted by humans66. Farming less arable lands would take even more acres per person than at present, because of lower productivity per acre88.
SOLUTIONS

Because food production is the chief transformer of natural ecosystems, a key challenge will be feeding more people without significantly adding to the existing agricultural and fisheries footprint. Valuing natural capital (as explained earlier in the Extinctions section, p. 7) is a promising approach that can lead to significant gains in both biodiversity and crop yields; for instance, as has been shown by integrating coffee farms with natural landscapes in Costa Rica. Slowing and ultimately stopping the encroachment of agriculture into currently uncultivated areas (especially the few remaining tropical rainforests and savannahs) will probably require regulatory policies and incentives for conservation.

Recent studies indicate that even without increasing the agricultural footprint, it is feasible to increase food production adequately in an environmentally sound way through: (a) improving yields in the world’s currently less productive farmlands; (b) more efficiently using the water, energy, and fertilizer necessary to increase yields; (c) eating less meat; and (d) reducing food waste through better infrastructure, distribution, and more efficient consumption patterns—some 30% of the food currently produced is discarded or spoiled. Adapting crop strains to changing climate will also be required to maximize yields. In the oceans, solutions lie in enhanced fisheries management; sustainable aquaculture that focuses on species for which farming does not consume more protein than is produced; and reduction of pollution, especially along coasts.

It will be necessary to avoid losing more land to suburban sprawl through emphasizing development plans that provide higher-density housing and more efficient infrastructure in existing built-up areas, rather than carving new communities wholesale out of less disturbed surrounding lands.

Climate change will affect all places on the planet—those that are currently little impacted by humanity, as well as those now intensively used for agriculture or cities and towns—and the effects will be more pronounced with greater amounts of warming. Avoiding global ecosystem transformation will therefore also require keeping climate change to a minimum.
There are few, if any places on Earth where human-produced environmental contaminants are not being deposited. Traces of pesticides and industrial pollutants are routinely found in samples of soil or tree bark from virtually any forest in the world, in the blubber of whales, in polar bear body tissues, in fish from most rivers and oceans, and in the umbilical cords of newborn babies. Smog in many cities is far above levels considered safe. In the worst cases — such as in Beijing during January 2013 — polluted air can be seen from space. Other air pollutants, such as greenhouse gases and ozone, are invisible but cause serious global-scale problems, notably climate disruption. Oil spills routinely contaminate oceans and coastlines, as well as inland waters and land areas. Nuclear waste, and especially radioactive contamination from accidents at nuclear plants, is a growing problem, as is the ubiquity of hormone-disrupting or cancer-causing chemicals such as bisphenol-A (commonly known as BPA). Activities such as mining, manufacturing, and recycling of electronic equipment have not only concentrated dangerous pollutants locally, but also distributed them worldwide, notably harmful substances such as lead, chromium, mercury, and asbestos.

CAUSES FOR CONCERN

Health impacts. The health costs of pollution are enormous. At least 125 million people are now at direct risk from toxic wastes produced by mining and manufacturing. As of 2010 air pollution caused up to 6 million premature deaths per year. Environmental exposures are thought to contribute to 19% of cancer incidence worldwide. Millions of people drink groundwater contaminated with cancer-causing arsenic or harmful microbes. All total, as of 2010, the number of years lost due to illness, disability or early death (disability-adjusted life years, or DALYS) from environmental hazards is probably greater than those lost to malaria, tuberculosis, and HIV/AIDS combined. An emerging concern is the effect of hormone-simulating chemicals, such as endocrine disruptors, which may be affecting human growth, development, and health on a large scale. For instance, endocrine disruptors have been linked to earlier onset of puberty and obesity. The latter also leads to increased incidence of heart disease and type II diabetes.
Dead zones. Excess nitrogen from farm fertilizers, sewage plants, livestock pens, and coal plants eventually ends up in waterways and makes its way to the oceans, where it stimulates prodigious algal growth. Decay of the dead algae then sucks all the oxygen out of the water. The result is a dead zone where marine life is greatly reduced. Most coasts of the world now exhibit elevated nitrogen flow, with large dead zones occurring near major population centers.

Environmental devastation. Greenhouse gas pollutants—primarily human-produced carbon dioxide (CO₂), nitrous oxide (NO), and methane (CH₄) — are the causes of one of the biggest environmental problems, climate disruption. Herbicides, pesticides, and various chemicals used in plastic production contaminate many waterways directly, and then are taken up by organisms and bioamplified through food chains. Virtually all human beings on Earth carry a burden of these persistent chemicals, many of which are endocrine disruptors. Pharmaceuticals meant for humans or livestock, and subsequently flushed into drains or otherwise finding their way into rivers and lakes, disrupt growth and development of amphibians and fish. Sewage and excess fertilizer contribute significantly to damaging more than half of the world’s coral reefs, and in some ecoregions, up to 90% of reefs.

SOLUTIONS

The pollution problem is not a new one. The sources of environmental contamination generally are well known, especially for the worst sources, such as lead-battery recycling, lead smelting, mining and ore processing, tannery operations, municipal and industrial dumpsites, product manufacturing, chemical manufacturing, petrochemical industry, electronic waste, agricultural pesticides and excess fertilizers, and greenhouse gases. Viable prevention and cleanup solutions are available for most pollutants, but are often not employed because of cost. Significant reductions in pollution from manufacturing can be found in better regulation and oversight of industries using and producing hazardous wastes; better industry practices in controlling hazardous wastes and substances; educating local communities and hazardous industries in adverse effects of pollutants; enhancement of technology for management and treatment of pollutants; and minimizing location of potentially hazardous industries near population centers. Reducing air pollution (including greenhouse gases) requires phasing out coal-fired power plants and high-emissions vehicles immediately, and over time replacing fossil-fuel sources of energy with clean energy. Minimizing agricultural pollution requires maximizing efficiency in application of fertilizers, pesticides, and antibiotics.

Even more promising than these traditional approaches is to use our current scientific understanding of the mechanisms of toxicity to guide synthetic chemistry toward a new generation of inherently safer materials. This is now imminently feasible, and it promises to reward entrepreneurs who adopt these green chemistry approaches in the market.
There are two aspects to the population problem. One is how many people are on Earth. The other is the wide disparity in the ‘ecological footprint’ among different countries and societal sectors, with a relatively small proportion of humanity inefficiently using and impacting an inordinately large proportion of ecological resources.

Today there are more than seven billion people on the planet. Demographic projections of population growth indicate that some 2.5 billion more people may be added to the world population by 2050\(^{86,87}\), when today’s children will be reaching middle age (see the population growth chart below). How population actually changes in coming decades depends largely on what happens to fertility rates (the average number of children borne per woman in the population in her lifetime), as well as mortality rates. If the global average fertility rate stayed at its present level, there could be 27 billion people on Earth in the year 2100, but that is extremely unlikely. If fertility changed worldwide to “replacement rate” (in which parents just “replaced” themselves in the next generation — about 2.1 children per woman) and mortality rates were those typical of developed countries, then there would be 10.1 billion people in 2100. With a global average fertility rate of \(\frac{1}{2}\) child above replacement rate, the population would reach 15.8 billion in 2100, and a rate of \(\frac{1}{2}\) child below replacement would lead to an early peak in population size and a decline to about 6.2 billion people by 2100.

There are very wide differences in fertility between countries today. At the low end, rates are just 1.2 or 1.3 in several developed countries, including Latvia, Portugal, South Korea, and Singapore. Some countries with slightly higher fertility rates now show declining rates, including Russia, Germany, and Japan. Virtually all developed countries and a number of developing countries, including China, Brazil, and Thailand, now have below-replacement fertility, and their populations are on track to stop growing within a few decades at most. By contrast, many very poor developing countries still have fertility rates as high as 6 or more children per family: e.g., Zambia, Somalia, Burundi, and Afghanistan, among others. It is the high fertility in these regions that may keep the world population growing for a century more unless population policies lower their fertility sooner rather than later.

If the fertility rate in all countries rapidly changes so each family on average has one daughter, population will crest by 2050, then stabilize around 10.1 billion. The red line marks a population of 9-10.1 billion. Chart from UNDESA, 2011, ref. 87.

CAUSES FOR CONCERN

Each of the seven billion people now on Earth contributes at some level to climate disruption, extinctions, ecosystem transformation, and pollution. The actual contributions of course vary from region to region, country to country, and between rich and poor (see the graph on p. 17), with the general pattern being a much larger per capita footprint in highly industrialized, wealthier countries, and a lower per capita footprint in developing, poorer countries. Although each individual contribution to the global-change footprint can be tiny, when multiplied by billions, the effect becomes inordinately
large. Among the key ways population growth contributes to world problems are the following.

Climate disruption. On average each person on Earth produces about 4.9 tonnes of CO₂ per year, as of 2011106; thus, as population grows, greenhouse gases and consequent climate disruption increase proportionately.

Extinctions. Direct causes of extinction (habitat destruction, overexploitation) can be expected to increase as billions more people occupy and use more and more of the planet66. Further extinctions are likely to result from climate change. In addition, there are serious indirect impacts, notably the amount of net primary productivity, or NPPe, that humans consume or co-opt. (NPP is a measure of the “natural energy” available to power the global ecosystem.) Humans now appropriate about 28% of all NPP (although estimates range from 23% to 40%)98,61,107-109. There are limits to the amount of NPP that can be produced on Earth, so the more NPP that humans use, the less is available for other species. That means that as the human population grows, populations of other species inevitably go extinct (unless special conservation measures mitigate the losses) because of global energy constraints. Calculations that assume no change in human consumption patterns indicate that the amount of NPP required by 20 billion people—which would occur by the year 2085 if fertility rates stayed the same as they are now—would cause the extinction of most other species on Earth110. Clearly, a human population of that size is untenable.

Ecosystem Transformation. A little less than 2 acres of land has already been converted for each person on Earth5,58,60. If that per capita rate of land conversion continued, adding 2.5 billion more people to the planet means that the majority of Earth’s lands—a little over 50%—would have been changed into farms, pastures, cities, towns, and roads by 2050. Continuing to use land at the rate of 2 acres per person would mean that 85% of Earth’s lands would have to be used—including inhospitable places like deserts, the Arctic, and the Antarctic—if the population hit 15 billion. Such unworkable scenarios underscore that population cannot grow substantially without reducing the human footprint.

Pollution. All of the most dangerous sources of pollution result from per capita demand for goods and services and, given current practices, will increase proportionately with the number of people on Earth. Additionally, there is the problem of treating and disposing of human waste (sewage and garbage), which multiplies roughly in proportion to numbers of people.

\begin{center}
\begin{tabular}{ll}
Singapore (18) & 38.7 \\
Saudi Arabia (6) & 24.0 \\
Canada (9) & 27.0 \\
Netherlands (12) & 21.9 \\
USA (1) & 19.7 \\
Norway (52) & 17.0 \\
Australia (20) & 16.7 \\
South Korea (10) & 16.7 \\
Finland (54) & 14.2 \\
Japan (3) & 12.8 \\
Germany (8) & 10.8 \\
Spain (16) & 10.7 \\
France (12) & 10.0 \\
Venezuela (24) & 9.8 \\
U.K. (14) & 9.3 \\
Italy (15) & 8.7 \\
Iraq (25) & 8.4 \\
Russia (5) & 8.1 \\
Iran (13) & 7.8 \\
Chile (37) & 6.9 \\
Mexico (11) & 6.8 \\
Thailand (22) & 5.4 \\
Brazil (7) & 4.8 \\
South Africa (29) & 4.4 \\
Egypt (23) & 3.6 \\
Botswana (142) & 2.7 \\
China (2) & 1.9 \\
India (4) & 1.9 \\
Kenya (87) & 0.7 \\
Bangladesh (73) & 0.2 \\
Nepal (131) & 0.2 \\
\end{tabular}
\end{center}

\begin{itemize}
\item **barrels of oil per person per year**
\item Numbers at right are barrels used per person per year (data from CIA Fact Book, 2013, ref. 115).
\item Consumption varies dramatically among countries, as illustrated by this graph of average barrels of oil used per person per year in some of the top oil-consuming countries compared to other representative nations. Numbers in parentheses give world rank in oil consumption.
\item Numbers at right are barrels used per person per year (data from CIA Fact Book, 2013, ref. 115).
\item The challenge is bringing down per capita consumption rates in countries in which rates are now too high, while allowing for growth in developing countries that are now at low consumption rates. In the case of fossil fuels, scaling up of renewables and new technological innovations will be required to solve the problem.
\end{itemize}

e NPP is defined as the net amount of solar energy converted to plant organic matter through photosynthesis.
An important consideration is that basic needs—a place to live, food, water, and adequate health care—are difficult to provide even for the seven billion people already alive today. Although international programs have been making significant gains in bringing these basic needs to more people and places, about 80% of the world’s population still lives below poverty level (i.e., on less than $10 per day; 1.4 billion people still live on less than $1.25 per day)111; 2.6 billion people lack basic sanitation services (more than one-third of all the people on the planet)111; 1.1 billion people have inadequate access to water111; about 870 million people (1 out of every 8) lack enough food112; and 1 billion people lack access to basic health care systems113. Addition of 2.5 billion more people by 2050, and more after that, would make these already-challenging problems even more difficult to solve, particularly since the highest fertility rates currently are in the poorest countries. For example, despite an overall decrease in malnourished children from 1990 to 2011, the number of underfed children in Africa—where populations have grown substantially and most countries are relatively poor—rose from about 46 million to 56 million in those two decades114.

SOLUTIONS

Two strategies will be required to avoid the worst impacts of population growth. The first involves recognizing that sustaining at least the quality of life that exists today while still adding some billions of people will require reducing the per capita human footprint—for example, developing and implementing carbon-neutral energy technologies, producing food and goods more efficiently, consuming less, and wasting less. This amounts to a dual challenge of reducing the per capita use of resources in economically developed countries, while still allowing growth in quality of life in developing countries. For example, the average U.S. citizen used about 22 barrels of oil per year in 2011, whereas the average person in China and India used only about 3 and 1 barrels, respectively (see the graph on p. 17)115. Evening out such disparities while still preserving quality of life will require a transformation of energy and resource-consumption regimes in both rich and poor nations, as well as major technological breakthroughs in some areas. Especially in the energy sector, policy changes will be needed to ensure that developing countries can “leap-frog” over outdated technologies, as occurred with the mobile phone industry. Overall, per capita consumption can be reduced by using state-of-the-art science for designing, developing, and commercializing the materials that are used by billions of people.

The second strategy involves ensuring that the lower population-growth projections are the ones that prevail44,116. The medium-fertility variant worldwide (on average one daughter per family) would stabilize world population at about 10 billion; that would actually entail a large increase in fertility in all developed countries plus China and dozens of other developing countries. Therefore the 10-billion benchmark clearly can be improved upon. Today, about 40% of the population lives in countries where fertility is already near replacement, and another 42% lives in countries where the fertility rate is significantly lower. The “low” projection (see the graph on p. 16) is achievable and should be the goal. Ending world population growth at about 8 billion requires bringing down fertility rates in the 18% of the population87 that live mostly in economically disadvantaged countries, where people still lack ready access to education and health care. Raising levels of education, particularly among women, and providing access to safe and effective means of contraception to those who want it, have been proven to reduce fertility rates substantially44,117.
While climate disruption, extinctions, ecosystem transformation, pollution, and population growth all are serious problems on their own, they interact with each other in ways that make their total effects much more than simply the sum of their parts. For example, pollution leads to local losses of biodiversity, which in turn leads to major ecological changes. Cutting down old-growth rainforests permanently transforms local climate by making it effectively drier, which in turn permanently changes the local ecosystem from forest to grassland. At the same time global climate disruption is magnified as a result of removing a major source of carbon sequestration. Scaling up, as global climate reaches critical thresholds of change, rapid disappearance of whole biomes, such as boreal forests, may result. Some pressures are tied intimately to others: for instance, increasing human population size, and especially increasing per capita consumption, multiplies the impacts of all four of the other problems.
CAUSES FOR CONCERN

Interaction effects markedly increase the chances that crossing critical thresholds will lead to irreversible change79,119. That means that multiple global pressures can combine to cause undesirable changes to occur more unexpectedly, faster and more intensely than what would be predicted from considering each pressure separately120-124. Such unanticipated changes in essential resources — food, water, climate predictability, biodiversity — are likely to result in social strife.

The pressures of each dangerous trend on its own, combined with the multiplying effect of combining them, makes it highly plausible that disruptive societal changes would occur within decades if business as usual continues5,120,122. Even taken individually, the current trajectories of climate change, extinctions, ecosystem transformation, pollution, and population growth are faster and greater than the planetary pressures that triggered so-called ‘planetary state-changes’ in the past5. Essentially, those were times when the Earth system hit a “tipping point,” that is, suddenly switched to a new condition that precipitated abrupt, major, and permanent changes, including losses of species and shifts in ecological structure and ecosystem services that affected all places on the planet. The last time this happened was nearly 12,000 years ago, when the last glaciation ended. In general, “tipping points” are characteristic of how biological systems respond to continued pressures, and they are well documented at a variety of spatial and temporal scales79,125.

SOLUTIONS

Minimizing the chances that unanticipated global changes will result from interaction effects requires flattening the trajectories of all five dangerous trends126. An important part of the solution lies in relieving the global pressures that have the strongest interaction effects, namely population growth, per capita resource consumption, and greenhouse gas emissions. These affect conditions in all parts of the planet, because the extent of ecosystem transformation, extinctions, and pollution inevitably multiply as population grows, as people consume more, and as climate changes, and climate disruption becomes more pronounced as more people use energy derived from fossil fuels.

While the science is clear that continuing the negative trends of climate disruption, extinction, ecosystem loss, pollution, population growth and growing per capita consumption are harmful to humanity, actually solving these problems will require recognition of their urgency by people and governments at all levels. The technological expertise is available to mitigate many of the harmful impacts, but ultimately, science and technology only provide the tools; it is up to society to decide whether or not they want to use them. Therefore, a crucial next step in diffusing these problems is societal recognition of their urgency and willingness to commit human ingenuity and resources towards implementing solutions88. This will entail enhanced education about these issues at all levels, including schools, businesses, the media, and governments, and sustainable development goals that acknowledge that human well-being depends on planetary well-being126.

The window of time for this global effort to begin is short, because the science also demonstrates that with each passing year of business as usual, the problems not only become worse, they become more expensive and difficult to solve, and our chances of avoiding the worst outcomes diminish. Put another way, starting now means we have a good chance of success; delaying even a decade may be too late.

32 WRI. *Millennium Ecosystem Assessment, Ecosystems and Human Well-being: Biodiversity Synthesis*. 1-100 (World Resources Institute, 2005).

54 Greenburg, P. *Four Fish, the Future of the Last Wild Food*. (Penguin, 2011).
74 DAISIE. Delivering alien invasive species inventories for Europe. European Commission under the Sixth Framework Programme through the DAISIE project http://www.europe-aliens.org/ last accessed December 12, 2012 (2012).

SOME OTHER RELEVANT REPORTS

ENDORSED BY

As of May 21, 2013 08:00 PM PDT

NAME: Anthony D. Barnosky*
POSITION: Professor, Dept. Integrative Biology
INSTITUTION: Univ. of California, Berkeley
DATE: April 25, 2013

NAME: Dr. Tundi Agardy
POSITION: Executive Director
INSTITUTION: Sound Seas, 26 Van Nuys Rd, Colrain, MA 01340 USA
DATE: April 26, 2013

NAME: Michael Agliardi, SJ, Ph.D.
POSITION: Assistant Prof.
INSTITUTION: Loyola University Chicago
DATE: May 3, 2013

NAME: Luis F. Aguirre
POSITION: Director
INSTITUTION: Centro de Biodiversidad y Genética, Universidad Mayor de San Simón
DATE: April 25, 2013

NAME: Hossein Akhani
POSITION: Professor of Systematic Botany
INSTITUTION: School of Biology, University of Tehran
DATE: 19.05.2013

NAME: Maria Teresa Alberdi
POSITION: Research Professor
INSTITUTION: Museo Nacional de Ciencias Naturales, CSIC
DATE: 13th May, 2013

NAME: Ross A. Alford
POSITION: Professor (Personal Chair)
INSTITUTION: School of Marine and Tropical Biology, James Cook University, Townsville, Australia
DATE: 19 May 2013

NAME: Caitlin Allen
POSITION: Professor and Chair of Plant Pathology
INSTITUTION: University of Wisconsin-Madison, USA
DATE: April 26, 2013

NAME: Juan C. Alonso
POSITION: Research Professor
INSTITUTION: Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, SPAIN
DATE: 25 April 2013

NAME: Miguel A. Alonso-Zarazaga (Dr)
POSITION: Tenured Scientist (Entomologist)
INSTITUTION: Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
DATE: 26 April 2013

NAME: Peter Alpert
POSITION: Professor
INSTITUTION: University of Massachusetts – Amherst
DATE: April 26, 2013

NAME: CARLOS ALONSO ALVAREZ
POSITION: Tenure Scientist (Científico Titular)
INSTITUTION: Consejo Superior de Investigaciones Científicas (CSIC), Spain
DATE: May 5, 2013

NAME: Ameaka, Gabriel
POSITION: Professor of Botany
INSTITUTION: Department of Botany, University of Ghana, Legon, Ghana
DATE: 20/05/2013

NAME: Barbara J. Anderson
POSITION: Research Fellow
INSTITUTION: University of Otago
DATE: 20th May 2013

NAME: Nigel Andrew
POSITION: Associate Professor of Entomology
INSTITUTION: University of New England, Armidale, Australia
DATE: 3rd May 2013

NAME: Arto Annila
POSITION: Professor, Department of Physics
INSTITUTION: University of Helsinki
DATE: May 20, 2013

NAME: Miguel Bastos Araújo
POSITION: Senior Research Scientist
INSTITUTION: National Museum of Natural Sciences, Madrid, Spanish Research Council (CSIC)
DATE: 25/04/2012

NAME: W. Scott Armbruster
POSITION: Professor of Ecology & Evolution
INSTITUTION: University of Portsmouth, UK, and University of Alaska, Fairbanks
DATE: 7 May 2013

NAME: Kenneth J. Arrow
POSITION: Professor Emeritus of Management Science and Engineering
INSTITUTION: Stanford University
DATE: Monday, 20 May 2013

NAME: Beatriz Arroyo
POSITION: Researcher
INSTITUTION: Instituto de Investigación en Recursos Cinegéticos (IREC)
DATE: 7/05/2013

NAME: Dr. Mary T. K. Arroyo
POSITION: Director and Full Professor of Biology
INSTITUTION: Institute of Ecology and Biodiversity (IEB)
DATE: 30 April, 2013

NAME: JOAQUIN ARROYO-CABRALES
POSITION: SENIOR SCIENTIST
INSTITUTION: INSTITUTO NACIONAL DE ANTROPOLOGIA E HISTORIA, MEXICO
DATE: 10 May 2013

NAME: Khalid Aziz
POSITION: Otto N Miller Professor Emeritus, Energy Resources Engineering
INSTITUTION: Stanford University
DATE: May 20, 2013
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliang Chen</td>
<td>Professor and Canada Research Chair in Toxicology and Environmental Health</td>
<td>University of Ottawa</td>
<td>April 29, 2013</td>
</tr>
<tr>
<td>Yvonne Chan</td>
<td>Postdoctoral Researcher</td>
<td>University of Hawaii</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>F. Stuart Chapin, III</td>
<td>Professor Emeritus</td>
<td>Institut Michel Serres, Ecole normale</td>
<td>May 19, 2013</td>
</tr>
<tr>
<td>C. Page Chamberlain</td>
<td>Professor</td>
<td>University of Gothenburg, Sweden</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Anne Chemin-Roberty</td>
<td>Chargée de Coordination et Communication</td>
<td>Institut Michael Serres, Ecole normale</td>
<td>30/04/2013</td>
</tr>
<tr>
<td>Deliang Chen</td>
<td>August Röhss Chair</td>
<td>Department of Earth Sciences, University of Gothenburg, Sweden</td>
<td>28 April, 2013</td>
</tr>
<tr>
<td>Norman L. Christensen</td>
<td>Research Professor and Founding Dean</td>
<td>Nicholas School of the Environment, Duke University, Durham, NC</td>
<td>May 3, 2013</td>
</tr>
<tr>
<td>Patrick Christie</td>
<td>Professor, School of Marine and Environmental Affairs and Jackson School of International Studies</td>
<td>University of Washington</td>
<td>April 26th, 2013</td>
</tr>
<tr>
<td>James S Clark</td>
<td>Professor</td>
<td>Duke University</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>William A. Clemens</td>
<td>Curator and Professor Emeritus, University of California Museum of Paleontology and Department of Integrative Biology</td>
<td>University of California Berkeley</td>
<td>May 1, 2013</td>
</tr>
<tr>
<td>Phyllis D. Coley</td>
<td>Distinguished Professor of Biology</td>
<td>University of Utah</td>
<td>April 26, 2013</td>
</tr>
<tr>
<td>Scott L Collins</td>
<td>Regent’s Professor</td>
<td>University of North Carolina</td>
<td>Wilmington</td>
</tr>
<tr>
<td>Patricia Ann Conrad</td>
<td>Professor, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine</td>
<td>University of California, Davis</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Caroline S. Conzelman, Ph.D.</td>
<td>Associate Director, Global Studies Academic Program, Program Director, Bolivia Global Seminar Instructor, Anthropology</td>
<td>University of Colorado at Boulder</td>
<td>April 28, 2013</td>
</tr>
<tr>
<td>Jorge Cortés</td>
<td>Researcher and Professor of Marine Sciences</td>
<td>Universidad de Costa Rica</td>
<td>May 21, 2013</td>
</tr>
<tr>
<td>Denis Cousset</td>
<td>Professor</td>
<td>Muséum National Histoire Naturelle, Paris</td>
<td>May 26, 2013</td>
</tr>
<tr>
<td>Pete Coxon</td>
<td>Professor of Geography</td>
<td>Trinity College Dublin</td>
<td>May 20, 2013</td>
</tr>
<tr>
<td>Craig Criddle</td>
<td>Professor, Department of Civil & Environmental Engineering, and Senior Fellow, Woods institute</td>
<td>Stanford University</td>
<td>May 18, 2013</td>
</tr>
<tr>
<td>Jorge V. Crisci</td>
<td>PROFESSOR OF BIOGEOGRAPHY</td>
<td>UNIVERSIDAD NACIONAL DE LA PLATA, ARGENTINA</td>
<td>May 19, 2013</td>
</tr>
<tr>
<td>Larry Crowder</td>
<td>Ed Ricketts Professor of Biology and Science Director for the Center for Ocean Solutions</td>
<td>Stanford University Hopkins Marine Station</td>
<td>May 16, 2013</td>
</tr>
<tr>
<td>Lisa M. Curran</td>
<td>Professor</td>
<td>Stanford University</td>
<td>May 20, 2013</td>
</tr>
<tr>
<td>Senior Scientist and Director of UM EME 212</td>
<td>IRD</td>
<td>Stanford University</td>
<td>May 10, 2013</td>
</tr>
<tr>
<td>Gretchen C. Daily</td>
<td>Professor</td>
<td>Stanford University</td>
<td>April 23, 2013</td>
</tr>
<tr>
<td>Diane Dodd</td>
<td>Assistant Professor</td>
<td>University of North Carolina</td>
<td>Wilmington</td>
</tr>
</tbody>
</table>
NAME: Emilie EGEA
POSITION: Director, Advanced Conservation Strategies; Visiting Professor, Laboratoire Ecologie, Systémétique & Evolution, Université Paris-Sud 11;Fellow, Cornell University
INSTITUTION: Université Paris-Sud 11; Cornell University
DATE: April 26, 2012

NAME: C. Josh Donlan MA PhD
POSITION: Sterling Professor of Ecology and Evolutionary Biology
INSTITUTION: Yale University
DATE: April 25, 2013

NAME: Peter Doran
POSITION: Distinguished Professor
INSTITUTION: University of Illinois at Chicago
DATE: April 25, 2013

NAME: Don Driscoll
POSITION: Associate Professor
INSTITUTION: Fenner School of Environment and Society, Australian National University
DATE: 29/4/13

NAME: Robert Dudley
POSITION: Professor
INSTITUTION: University of California, Berkeley
DATE: 29 April 2013

NAME: Ivo Duijneste
POSITION: Assistant Adjunct Professor
INSTITUTION: Dep. of Integrative Biology, University of California, Berkeley/University of California Museum of Paleontology / Dep. of Earth Sciences, Utrecht University
DATE: April 30, 2013

NAME: John P. Dumbacher
POSITION: Associate Curator of Ornithology and Mammalogy
INSTITUTION: California Academy of Sciences, San Francisco, CA
DATE:13 May 2013

NAME: Scott Fendorf
POSITION: Professor
INSTITUTION: Stanford University
DATE: 5/19/2013

NAME: Pablo Ferreras
POSITION: Senior Scientist Research, Spanish Research Council (CSIC)
INSTITUTION: Spanish Game Research Institute (IREC), Ciudad Real, Spain
DATE: May 7th, 2013

NAME: Seth Finnegan
POSITION: Assistant Professor
INSTITUTION: UC Berkeley, Dept. of Integrative Biology
DATE: April 28, 2013

NAME: JON FIELDSÅ
POSITION: PROFESSOR
INSTITUTION: NATURAL HISTORY MUSEUM OF DENMARK, University of Copenhagen, Denmark

NAME: Joern Fischer
POSITION: Professor
INSTITUTION: Leuphana University Lueneburg, Germany
DATE: 18 May 2013

NAME: Carolin Frank
POSITION: Assistant Professor
INSTITUTION: UC Merced
DATE: 4/26/13

NAME: Eric Galbraith
POSITION: Assistant Professor
INSTITUTION: Department of Earth and Planetary Science, McGill University
DATE: April 29, 2013

NAME: Candace Galen
POSITION: Professor
INSTITUTION: University of Missouri
DATE: April 25, 2013

NAME: Amiran Gamkrelidze MD, PhD, Professor
INSTITUTION: University of Missouri
DATE: May 19, 2013

NAME: Peter Frumhoff
POSITION: Director of Science and Policy, Chief Scientist, Climate Campaign
INSTITUTION: Union of Concerned Scientists
DATE: 30 April 2013

NAME: Joá Thanksgiving
POSITION: Emeritus Professor of Coral Reef Ecology
INSTITUTION: Newcastle University, UK
DATE: 17/05/2013

NAME: Bob Edwards
POSITION: Professor of Sociology
INSTITUTION: East Carolina University
DATE: April 26, 2013

NAME: Mary Edwards
POSITION: Professor
INSTITUTION: University of Southampton, Geography and Environment
DATE: 7th May 2013

NAME: Emile EGEA

NAME: Alasdair Edwards
POSITION: Emeritus Professor of Coral Reef Ecology
INSTITUTION: Newcastle University, UK
DATE: 17/05/2013

NAME: Bob Edwards
POSITION: Professor of Sociology
INSTITUTION: East Carolina University
DATE: April 26, 2013

NAME: Mary Edwards
POSITION: Professor
INSTITUTION: University of Southampton, Geography and Environment
DATE: 7th May 2013

NAME: Emile EGEA
NAME: Charles H. Greene
POSITION: Professor, Department of Wrath & Atmospheric Sciences
INSTITUTION: Cornell University
DATE: 4/30/13

NAME: Harry W. Greene
POSITION: Professor of Ecology and Evolutionary Biology
INSTITUTION: Cornell University
DATE: April 28, 2013

NAME: Dr. Merilyn J Grey
POSITION: Honorary Research Fellow
INSTITUTION: Department of Zoology, La Trobe University, Melbourne, Australia
DATE: 20 May 2013

NAME: Marianna Grossman
POSITION: President and Executive Director
INSTITUTION: Sustainable Silicon Valley
DATE: MAY 3, 2013

NAME: Elizabeth A. Hadly
POSITION: Professor, Department of Biology and Senior Fellow, Woods Institute
INSTITUTION: Stanford University
DATE: April 23, 2013

NAME: Joan Stephens Hadly
POSITION: Sr Vice President, Advancement
INSTITUTION: Stanford University
DATE: May 8, 2013

NAME: Yohannes Hailu Sellassie
POSITION: Curator
INSTITUTION: Cleveland Museum of Natural History
DATE: May 12, 2013

NAME: Sharon J. Hall
POSITION: Associate Professor
INSTITUTION: Arizona State University
DATE: May 18, 2013

NAME: Olivier Hamant
POSITION: Researcher
INSTITUTION: INRA, France
DATE: 26 April 2013

NAME: Phillip C. Hanawalt
POSITION: Morris Herstein Professor of Biology
INSTITUTION: Stanford University
DATE: May 16, 2013

NAME: Catherine HÂNNI
POSITION: CNRS Director
INSTITUTION: CNRS/ENS Lyon
DATE: April 30, 2013

NAME: James Hansen
POSITION: Director of Hansen Climate Science Program
INSTITUTION: Columbia University Earth Institute
DATE: 21 May 2013

NAME: Ilkka Hanski
POSITION: Research professor
INSTITUTION: University of Helsinki
DATE: April 25, 2013

NAME: David D. Hart
POSITION: Director, Senator George J. Mitchell Center for Sustainability Solutions
INSTITUTION: University of Maine, Orono
DATE: 4/30/2013

NAME: John Harte
POSITION: Professor of Ecosystem Sciences
INSTITUTION: UC Berkeley
DATE: April 25, 2013

NAME: Celia A. Harvey
POSITION: Vice President, Ecosystem Services, Conservation International
DATE: May 21, 2013

NAME: PAUL HARVEY CBE FRS
POSITION: Professor
INSTITUTION: Department of Zoology, University of Oxford, UK
DATE: 7 May 2013

NAME: Alan Hastings
POSITION: Distinguished Professor
INSTITUTION: University of California, Davis
DATE: May 17, 2013

NAME: MARK HAY
POSITION: PROFESSOR OF BIOLOGY
INSTITUTION: GEORGIA INSTITUTE OF TECHNOLOGY
DATE: 4/25/13

NAME: Harold Heatwole
POSITION: Professor of Biology
INSTITUTION: North Carolina State University
DATE: 25 April 2013

NAME: H. Craig Heller
POSITION: Professor of Biology and Human Biology
INSTITUTION: Stanford University
DATE: May16, 2013

NAME: Jessica J. Hellmann
POSITION: Associate Professor of Biological Sciences
INSTITUTION: University of Notre Dame
DATE: May 15, 2013

NAME: Martin Hellman
POSITION: Professor Emeritus of Electrical Engineering
INSTITUTION: Stanford University
DATE: 26 APRIL 2013

NAME: Hans R Herren
POSITION: President
INSTITUTION: Millennium Institute, Washington, DC and Biovision Foundation, Zurich
DATE: May 10, 2013

NAME: Josiah Heyman
POSITION: Professor of Anthropology and Chair, Sociology and Anthropology
INSTITUTION: University of Texas at El Paso
DATE: April 29, 2013

NAME: Thomas Hickler
POSITION: Professor for Quantitative Biogeography
INSTITUTION: Museo Nacional de Ciencias
POSITION: RyC Research Fellow
NAME: Joaquín Hortal
DATE: 5/19/13

INSTITUTION: Western Washington University,
POSITION: Professor of Biology
NAME: Professor Stephen D. Hopper AC FLS FTSE
DATE: Monday 20th May 2013

INSTITUTION: University of Alaska Fairbanks
NAME: Larry D. Hinzman
POSITION: Director and Professor
DATE: 20 May 2013

INSTITUTION: University of Florida
NAME: C.S.Holling
DATE: 25 April 2013

INSTITUTION: University of California, Santa Cruz
NAME: A. Hope Jahren
DATE: April 30, 2013

INSTITUTION: Universidad Catolica de Chile
NAME: Fabian M Jakic
DATE: April 28, 2013

INSTITUTION: School of Human Evolution and
Social Change, Arizona State University
NAME: Nina G. Jablonski
DATE: May 4, 2013

INSTITUTION: The University of Western Australia
NAME: Jeffry A. Hutchings
DATE: May 3, 2013

INSTITUTION: Florida State University
NAME: Brian Inouye
DATE: April 25, 2013

INSTITUTION: Harvard University
NAME: Christian Hof
POSITION: Postdoctoral Researcher
DATE: 17 May 2013

INSTITUTION: Department of Biology, Dalhousie
University, CANADA, and Centre for Ecological
and Evolutionary Synthesis, University of Oslo,
NORWAY
NAME: Rolf A. Ims
DATE: April 25, 2013

INSTITUTION: The University of Western Australia
NAME: Dr Karen E. Hodges
POSITION: Associate Professor, Conservation
Biology
DATE: 25 April 2013

INSTITUTION: University of New South Wales, Australia
NAME: David Karoly
POSITION: Emeritus Distinguished Professor of Soil
Physics
DATE: 4/25/2013

INSTITUTION: School of Public Policy and
Environment, Walden University
NAME: William Jury
DATE: Apr 26, 2013

INSTITUTION: Stanford University
NAME: Dr Jules Kajtar
DATE: 4/25/2013

INSTITUTION: University of Alaska Fairbanks
NAME: Jeremy B. Jones
POSITION: Faculty
DATE: May 17, 2013

INSTITUTION: Northern Illinois University
NAME: Fabian M Jakic
DATE: May 19, 2013

INSTITUTION: The Land Institute
NAME: Nina G. Jablonski
DATE: May 4, 2013

INSTITUTION: The University of Western Australia
NAME: Jeffrey A. Hutchings
DATE: May 3, 2013

INSTITUTION: Harvard University
NAME: Christian Hof
DATE: April 25, 2013

INSTITUTION: Stanford University
NAME: David Karoly
DATE: April 29, 2013

INSTITUTION: School of Public Policy and
Environment/Ross School of Business
NAME: William Jury
DATE: 4/25/2013

INSTITUTION: University of California Berkeley
NAME: Leslee J. Hlusko
DATE: April 25, 2013

INSTITUTION: Department of Biology, Dalhousie
University, CANADA, and Centre for Ecological
and Evolutionary Synthesis, University of Oslo,
NORWAY
NAME: Rolf A. Ims
DATE: April 25, 2013

INSTITUTION: Stanford University
NAME: Patricia P. Jones, Ph.D.
DATE: May 8, 2013

INSTITUTION: Stanford University
NAME: Dibesh Karmacharya
DATE: 26 April 2013

INSTITUTION: University of Zimbabwe
NAME: David Karoly
DATE: May 17, 2013

INSTITUTION: Department of Plant Evolutionary
Biology, University of Tromsø, Norway
NAME: Rolf A. Ims
DATE: April 25, 2013

INSTITUTION: School of Human Evolution and
Social Change, Arizona State University
NAME: Nina G. Jablonski
DATE: May 4, 2013

INSTITUTION: The Land Institute
NAME: A. Hope Jahren
DATE: April 30, 2013

INSTITUTION: University of California, Berkeley and
The Nature Conservancy
NAME: David Karoly
DATE: 4/25/2013

INSTITUTION: Shaike Kattivu
NAME: David Karoly
DATE: 17 May 2013

INSTITUTION: Universidad Nacional de la Plata,
ARGENTINA
NAME: LILIANA KATINAS
DATE: May 19, 2013

INSTITUTION: Stanford University
NAME: Donald Kennedy
DATE: May 19, 2013
INSTITUTION: Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
DATE: 25 April 2013

NAME: Jere H. Lipps
POSITION: Professor Emeritus
INSTITUTION: University of California, Berkeley
DATE: April 29, 2013

NAME: Professor Adrian M Lister
POSITION: Research Leader
INSTITUTION: The Natural History Museum, London
DATE: 13th May 2013

NAME: Jangguo (Jack) Liu
POSITION: Rachel Carson Chair in Sustainability and Director
INSTITUTION: Center for Systems Integration and Sustainability, Michigan State University
DATE: 4/26/13

NAME: Dr John Llewellyn
POSITION: Postdoctoral research fellow
INSTITUTION: James Cook University, Australia
DATE: 20/5/2013

NAME: Jorge Miguel Lobo
POSITION: Research professor of the Museo Nacional de Ciencias Naturales (CSIC)
INSTITUTION: Museo Nacional de Ciencias Naturales (CSIC), C/ Jose Gutiérrez Abascal 2, Madrid
DATE: 13 May 2013

NAME: Michael E. Loik
POSITION: Associate Professor, Department of Environmental Studies
INSTITUTION: University of California, Santa Cruz
DATE: April 25, 2013

NAME: Adam Lomnicki
POSITION: Professor Emeritus of Biology
INSTITUTION: Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
DATE: 18th of May 2013

NAME: John Longino
POSITION: Professor
INSTITUTION: Department of Biology, University of Utah
DATE: 26 April 2013

NAME: Cindy V. Looy
POSITION: Assistant Professor
INSTITUTION: UC Berkeley and UC Museum of Paleontology
DATE: April 29, 2013

NAME: Celia López-González
POSITION: Professor Titular CIDIR Unidad Durango
INSTITUTION: Instituto Politécnico Nacional
DATE: May 10 2013

NAME: Jonathan Losos
POSITION: Professor and Curator
INSTITUTION: Dept of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
DATE: April 28, 2013

NAME: Thomas E. Lovejoy
POSITION: University Professor
INSTITUTION: George Mason University
DATE: April 25, 2013

NAME: Richard Lowy
POSITION: Ecologist; Director, Eco Insights, and recently Principal Scientist, Arthur Rylah

NAME: Institute for Environmental Research (Victorian Government)

NAME: Stephen Luby
POSITION: Professor or Medicine
INSTITUTION: Stanford University
DATE: April 29, 2013

NAME: Gary Luck
POSITION: Professor in Ecology and Interdisciplinary Science
INSTITUTION: Charles Sturt University, Institute for Land, Water and Society
DATE: 19th May 2013

NAME: Per Lundberg
POSITION: Professor
INSTITUTION: Dept. Biology, Lund University, Lund, Sweden
DATE: 30 April, 2013

NAME: Ian D. Lunt
POSITION: Associate Professor in Vegetation Ecology & Management
INSTITUTION: Institute of Land, Water & Society Science, Charles Sturt University, Australia
DATE: 20 May 2013

NAME: Manuel Maass
POSITION: Research Scientist
INSTITUTION: Centro de Investigaciones en Ecosistemas (CIEQ), Universidad Nacional Autónoma de México (UNAM)
DATE: April 27, 2013

NAME: Georgina Mace
POSITION: Professor of Biodiversity and Ecosystems
INSTITUTION: University College London
DATE: 10 May 2013

NAME: James A. MacMahon
POSITION: Dean, College of Science
INSTITUTION: Utah State University
DATE: 26 April 2013

NAME: Adjunct Prof Jonathan Majer
POSITION: Recently retired as Professor of Invertebrate Conservation
INSTITUTION: Curtin University, Perth, Western Australia
DATE: 26/Apr/13

NAME: Stephanie A. Malin, Ph.D.
POSITION: Mellon Foundation Postdoctoral Fellow with Center for Environmental Studies and Superfund Research Program
INSTITUTION: Brown University
DATE: 26 April 2013

NAME: Michael A. Mallin
POSITION: Research Professor
INSTITUTION: Center for Marine Science, University of North Carolina Wilmington
DATE: April 25, 2013

NAME: Michael E. Mann
POSITION: Distinguished Professor of Meteorology; Director of Penn State Earth System Science Center
INSTITUTION: Pennsylvania State University
DATE: May 18, 2013
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael McGehee</td>
<td>Associate Professor of Materials Science</td>
<td>Stanford University</td>
<td>May 20, 2013</td>
</tr>
<tr>
<td>Dr. Peter B. McIntyre</td>
<td>Assistant Professor</td>
<td>University of Wisconsin</td>
<td>26 April 2013</td>
</tr>
<tr>
<td>Galen A. McKinley</td>
<td>Associate Professor of Atmospheric and Oceanic</td>
<td>University of Washington, Nelson Institute for</td>
<td>1 May, 2013</td>
</tr>
<tr>
<td>Fiorenza Micheli</td>
<td>Professor</td>
<td>Environmental Studies</td>
<td>May 2, 2013</td>
</tr>
<tr>
<td>Sarah McMenamin</td>
<td>Postdoctoral Researcher</td>
<td>University of Wisconsin-Madison</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Rodrigo A. Medellin</td>
<td>Associate Professor of Ecology</td>
<td>National Autonomous University of Mexico</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Natalia Gašin Mejías</td>
<td>Postdoctoral researcher</td>
<td>University of Wisconsin-Madison</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>David J. Meltzer</td>
<td>Henderson-Morrison Professor of Prehistory</td>
<td>Southern Methodist University</td>
<td>May 13, 2013</td>
</tr>
<tr>
<td>Sarah Keene Meltzoff</td>
<td>Associate Professor</td>
<td>Rosenstiel School of Marine and Atmospheric</td>
<td>April 28, 2013</td>
</tr>
<tr>
<td>Santiago Merino</td>
<td>Professor of Research</td>
<td>Higher Council for Scientific Research (CSIC)-</td>
<td>24-04-2013</td>
</tr>
<tr>
<td>Laura A. Meyerson</td>
<td>Associate Professor</td>
<td>University of Rhode Island</td>
<td>May 2, 2013</td>
</tr>
<tr>
<td>Fiorenza Micheli</td>
<td>Professor</td>
<td>Stanford University, Hopkins Marine Station</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Edward L. Miles</td>
<td>Professor Emeritus of Marine Studies</td>
<td>University of Washington, School of Marine</td>
<td>24 April 2013</td>
</tr>
<tr>
<td>David R. Montgomery</td>
<td>Professor (Geomorphology)</td>
<td>University of Washington</td>
<td>5/7/2013</td>
</tr>
<tr>
<td>Arne O. Moors</td>
<td>Professor of Biodiversity</td>
<td>Simon Fraser University, Canada</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Harold A. Mooney</td>
<td>Professor Emeritus, Department of Biology,</td>
<td>Stanford University</td>
<td>April 23, 2013</td>
</tr>
<tr>
<td>MORAID Serge</td>
<td>PR CNRS, Universitè de Montpellier 2</td>
<td>Centre National de la Recherche, France</td>
<td>02/06/2013</td>
</tr>
<tr>
<td>Juan Moreno</td>
<td>Research Professor CSIC (Spanish Council for</td>
<td>Department of Evolutionary Ecology, National</td>
<td>26 April 2013</td>
</tr>
<tr>
<td>Christopher Moy</td>
<td>Lecturer</td>
<td>University of Otago, New Zealand</td>
<td>May 19, 2013</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Mulch</td>
<td>Vice Director Biodiversity and Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Institution</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>NAME: David Nogués-Brado</td>
<td>Associate Professor</td>
<td>University of Copenhagen</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Norbert Nausicaa</td>
<td>Assistant Professor</td>
<td>Université Libre de Bruxelles</td>
<td>30 April 2013</td>
</tr>
<tr>
<td>NAME: Christopher M. Nyamai</td>
<td>Senior Lecturer, Chair, Department of Geology</td>
<td>University of Nairobi</td>
<td>15 May 2013</td>
</tr>
<tr>
<td>NAME: Karen Oberhauser</td>
<td>Professor</td>
<td>University of Minnesota</td>
<td>4/29/2013</td>
</tr>
<tr>
<td>NAME: Timothy G. O’Connor</td>
<td>Emeritus Professor</td>
<td>University of South Florida (USF)</td>
<td>4/30/2013</td>
</tr>
<tr>
<td>NAME: Onesmo K. ole-MoiYoi MD</td>
<td>Board of Management</td>
<td>Kenya Agricultural Research Institute</td>
<td>14 May 2013</td>
</tr>
<tr>
<td>NAME: Gordon H. Orians</td>
<td>Emeritus Professor</td>
<td>University of Washington, Seattle, WA 98195</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Dr. Jamie F Orr</td>
<td>Adjunct Faculty, Physics & Engineering</td>
<td>Foothill College & Faculty Researcher, NASA Ames Research Center</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Olso Ovaskainen</td>
<td>Professor</td>
<td>University of Helsinki, Finland</td>
<td>25th April 2013</td>
</tr>
<tr>
<td>NAME: Norman Owen-Smith</td>
<td>Emeritus Research Professor</td>
<td>University of the Witwatersrand, Johannesburg</td>
<td>9 May 2013</td>
</tr>
<tr>
<td>NAME: John Orrock</td>
<td>Emeritus Professor</td>
<td>Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: James L. Patton, PhD</td>
<td>Curator and Professor Emeritus</td>
<td>Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Jonathan L. Payne</td>
<td>Associate Professor</td>
<td>Dept. of Geological & Environmental Sciences, Stanford University</td>
<td>28 April 2013</td>
</tr>
<tr>
<td>NAME: Richard G. Pearson</td>
<td>Emeritus Professor</td>
<td>James Cook University, Australia</td>
<td>20 May 2013</td>
</tr>
<tr>
<td>NAME: Kabir G. Peay</td>
<td>Assistant Professor</td>
<td>Stanford University</td>
<td>4/25/2013</td>
</tr>
<tr>
<td>NAME: Pablo Pelayez-Campomanes</td>
<td>Senior researcher</td>
<td>National Museum of Natural Sciences, CSIC, Spain</td>
<td>25/04/2013</td>
</tr>
<tr>
<td>NAME: Petri Pellikka</td>
<td>Professor of Geoinformatics</td>
<td>University of Helsinki</td>
<td>15.5.2013</td>
</tr>
<tr>
<td>NAME: LUIS F. PACHECO</td>
<td>Professor and Researcher</td>
<td>Universidad de Ecologia, Universidad Mayor de San Andrés, La Paz, Bolivia</td>
<td>24 April 2013</td>
</tr>
<tr>
<td>NAME: Kevin Padian</td>
<td>Professor and Curator</td>
<td>University of California, Berkeley</td>
<td>4/29/2013</td>
</tr>
<tr>
<td>NAME: Dianna K Padilla</td>
<td>Professor, Department of Ecology and Evolution</td>
<td>Stony Brook University</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Stephen Palumbi</td>
<td>Professor, Department of Biology and Director, Hopkins Marine Station</td>
<td>Stanford University</td>
<td>23 April 2013</td>
</tr>
<tr>
<td>NAME: James L. Patton, PhD</td>
<td>Curator and Professor Emeritus</td>
<td>Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Jonathan L. Payne</td>
<td>Associate Professor</td>
<td>Dept. of Geological & Environmental Sciences, Stanford University</td>
<td>28 April 2013</td>
</tr>
<tr>
<td>NAME: Richard G. Pearson</td>
<td>Emeritus Professor</td>
<td>James Cook University, Australia</td>
<td>20 May 2013</td>
</tr>
<tr>
<td>NAME: Kabir G. Peay</td>
<td>Assistant Professor</td>
<td>Stanford University</td>
<td>4/25/2013</td>
</tr>
<tr>
<td>NAME: Pablo Pelayez-Campomanes</td>
<td>Senior researcher</td>
<td>National Museum of Natural Sciences, CSIC, Spain</td>
<td>25/04/2013</td>
</tr>
<tr>
<td>NAME: Petri Pellikka</td>
<td>Professor of Geoinformatics</td>
<td>University of Helsinki</td>
<td>15.5.2013</td>
</tr>
<tr>
<td>NAME: Dr. Avril Pereira</td>
<td>Research Fellow</td>
<td>The Florey Institute of Neuroscience and Mental Health</td>
<td>20 May 2013</td>
</tr>
<tr>
<td>NAME: Henrique Miguel Pereira</td>
<td>Invited Professor</td>
<td>Faculty of Sciences of the University of Lisbon, Portugal</td>
<td>13 May 2013</td>
</tr>
<tr>
<td>NAME: Melissa Pesonen</td>
<td>National Science Foundation Postdoctoral Fellow in Biology</td>
<td>Indiana University</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Owen Petchey</td>
<td>Professor</td>
<td>University of Zurich</td>
<td>9 May 2013</td>
</tr>
<tr>
<td>NAME: Dmitri Petrov</td>
<td>Professor</td>
<td>Stanford University</td>
<td>5/20/13</td>
</tr>
<tr>
<td>NAME: Ben Phillips</td>
<td>Senior Research Fellow</td>
<td>Centre for Tropical Biodiversity and Climate Change, James Cook University</td>
<td>20 May 2013</td>
</tr>
<tr>
<td>NAME: Theunis Piersma</td>
<td>Professor of Global Flyway Ecology</td>
<td>University of Groningen/Royal Netherlands Institute for Sea Research (NIOZ)</td>
<td>18 May 2013</td>
</tr>
<tr>
<td>NAME: Stuart Pimm</td>
<td>Doris Duke Chair of Conservation</td>
<td>Duke University</td>
<td>28 April 2013</td>
</tr>
<tr>
<td>NAME: Stephanie Pincelli, PhD</td>
<td>Adjunct Professor</td>
<td>Director, Center for Sustainable Communities, Institute of the Environment and Sustainability</td>
<td>26 April 2013</td>
</tr>
<tr>
<td>NAME: Malin L. Pinsky</td>
<td>Conservation Research Fellow</td>
<td>Princeton University</td>
<td>24 April 2013</td>
</tr>
<tr>
<td>NAME: Erica Plambeck</td>
<td>Professor</td>
<td>Professor of Operations, Information and Technology</td>
<td>Stanford Graduate School of Business</td>
</tr>
<tr>
<td>NAME: P. David Polly</td>
<td>Professor</td>
<td>Department of Geological Sciences, Indiana University</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Warren R. Porter</td>
<td>Professor</td>
<td>University of Wisconsin, Madison</td>
<td>25 April 2013</td>
</tr>
<tr>
<td>NAME: Hugh Possingham</td>
<td>Professor and Centre Director</td>
<td>The University of Queensland</td>
<td>25 April 2013</td>
</tr>
</tbody>
</table>
NAME: Malcolm Potts
POSITION: Professor, School of Public Health
INSTITUTION: University of California-Berkeley
DATE: April 25, 2013

NAME: Mary E. Power
POSITION: Professor
INSTITUTION: Univ. California, Berkeley
DATE: April 25, 2013

NAME: Daniel Press
POSITION: Olga T. Griswold Professor, Environmental Studies Department and Executive Director, Center for Agroecology and Sustainable Food Systems
INSTITUTION: University of California, Santa Cruz
DATE: April 28, 2013

NAME: Alii Pyhälä
POSITION: Postdoctoral Researcher
INSTITUTION: Department of Biosciences, University of Helsinki
DATE: 25th April 2013

NAME: Dr Graham H. Pyke
POSITION: Distinguished Professor
INSTITUTION: School of the Environment, University of Technology Sydney
DATE: 26 April 2013

NAME: Nancy N. Rabalais
POSITION: Distinguished Professor
INSTITUTION: Edith Cowan University, School of Natural Sciences, Joondalup, Western Australia, Australia
DATE: 26 April 2013

NAME: Kent H. Redford
POSITION: Principal
INSTITUTION: Archipelago Consulting
DATE: May 19, 2013

NAME: William E. Rees, PhD, FRSC
POSITION: Professor Emeritus
INSTITUTION: University of British Columbia
DATE: 26 April 2013

NAME: Jonathan Rhodes
POSITION: Senior Lecturer
INSTITUTION: The University of Queensland
DATE: 29th April 2013

NAME: Holt R. Riddle
POSITION: Professor
INSTITUTION: University of Nevada Las Vegas
DATE: 26 April 2013

NAME: William J. Ripple
POSITION: Professor
INSTITUTION: Oregon State University
DATE: May 18, 2013

NAME: Euan G. Ritchie
POSITION: Lecturer in ecology
INSTITUTION: Deakin University, Australia
DATE: 18/5/2013

NAME: Anna Paul Rizzoli
POSITION: DVM, PhD, Animal Ecology Research Group Leader
INSTITUTION: Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige (TN), Italy
DATE: 26/04/2013

NAME: Dr Lisa Roberts
POSITION: Visiting Fellow, Environmental Science
INSTITUTION: University of Technology, Sydney
DATE: 29 April 2013

NAME: Heyward G. Robinson
POSITION: Senior Scientist, Applied Optics Laboratory
INSTITUTION: SRI International
DATE: 6 May 2013

NAME: John G. Robinson, Ph.D.
POSITION: Executive Vice President, Conservation and Science
INSTITUTION: Wildlife Conservation Society
DATE: April 25, 2013

NAME: Johan Rockström
POSITION: Professor, Water systems and Global Sustainability; Director, Stockholm Resilience Centre
INSTITUTION: Stockholm University
DATE: April 25, 2013

NAME: Antonio Gonzalez Rodriguez
POSITION: Researcher
INSTITUTION: Universidad Nacional Autonoma de Mexico
DATE: April 27th, 2013

NAME: Klaus Rohde
POSITION: Professor Emeritus
INSTITUTION: University of New England, Armidale, Australia
DATE: 26.4.2013

NAME: Terry L. Root
POSITION: Senior Fellow
INSTITUTION: Stanford University
DATE: 8 May 2013

NAME: Helen Rowe
POSITION: Assistant Research Professor
INSTITUTION: School of Life Sciences, Arizona State University
DATE: 4-26-2013

NAME: Lasse Ruokolainen
POSITION: Postdoctoral fellow
INSTITUTION: University of Helsinki
DATE: 26.4.2013

NAME: Takashi Saitoh
POSITION: Professor
INSTITUTION: Field Science Center, Hokkaido University, Japan
DATE: May 8, 2013

NAME: Osvaldo Sala
POSITION: Julie A. Wrigley Professor of Life Sciences and Sustainability
INSTITUTION: Arizona State University
DATE: 4/25/2013

NAME: Peter F Sale
POSITION: Assistant Director, Institute for Water, Environment and Health
INSTITUTION: United Nations University
DATE: April 25th 2013

NAME: Benjamin Santer
POSITION: Atmospheric Scientist
INSTITUTION: Lawrence Livermore National Laboratory
DATE: May 18, 2013
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Sutherland</td>
<td>Professor of Ocean and Fisheries Economics, University of British Columbia, Vancouver, Canada</td>
<td>April 10, 2013</td>
</tr>
<tr>
<td>Dr. David Suzuki, Emeritus</td>
<td>Professor, Sustainable Development Research Institute, University of British Columbia, Vancouver, BC, Canada</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>Alina M. Szmant</td>
<td>Professor of Marine Biology, University of California, Santa Cruz</td>
<td>April 26, 2013</td>
</tr>
<tr>
<td>Andrew Szasz</td>
<td>Professor of Environmental Studies, University of Washington</td>
<td>April 26, 2013</td>
</tr>
<tr>
<td>Dr. David Suzuki, Emeritus</td>
<td>Professor, Sustainable Development Research Institute, University of British Columbia, Vancouver, BC, Canada</td>
<td>April 25, 2013</td>
</tr>
<tr>
<td>John Terborgh</td>
<td>Research Professor, Nicholas School of the Environment and Earth Sciences, Duke University</td>
<td>April 29, 2013</td>
</tr>
<tr>
<td>Alexey Tesakov</td>
<td>Head of Laboratory for Quaternary Stratigraphy, Geological Institute, Russian Academy of Sciences, Moscow, Russia</td>
<td>May 7, 2013</td>
</tr>
<tr>
<td>John N. Thompson</td>
<td>Distinguished Professor of Ecology and Evolutionary Biology, University of California, Santa Cruz</td>
<td>April 30, 2013</td>
</tr>
<tr>
<td>Hiroshi Tomimatsu</td>
<td>Associate Professor, Department of Biology, Yamagata University, Japan</td>
<td>May 10, 2013</td>
</tr>
<tr>
<td>Susumu Tamiya</td>
<td>Lecturer, University of California, Berkeley, Berkeley</td>
<td>May 1, 2013</td>
</tr>
<tr>
<td>Alan Townsend</td>
<td>Professor, Dept. of Ecology and Evolutionary Biology Fellow, Institute of Arctic</td>
<td></td>
</tr>
</tbody>
</table>

NAME: James W. Valentine
POSITION: Professor of Integrative Biology, Emeritus
INSTITUTION: UC Berkeley
DATE: April 19, 2013

NAME: Jan van der Made
POSITION: Scientific researcher (Investigador científico)
INSTITUTION: Consejo Superior de Investigaciones Científicas (CSIC), Museo Nacional de Ciencias Naturales (Madrid, Spain).
DATE: 25-4-2013

NAME: Marcel van Tuinen
POSITION: Associate Professor
INSTITUTION: UNC at Wilmington
DATE: 4/25/13

NAME: Jake Vander Zanden
POSITION: Professor
INSTITUTION: University of Wisconsin-Madison
DATE: 4/25/2013

NAME: Elsa Vázquez-Domínguez, PhD
POSITION: Full-time Researcher, Instituto de Ecología, UNAM, México
DATE: 12 May 2013

NAME: Geerat J. Vermeij
POSITION: Distinguished Professor of Geology, Department of Geology
INSTITUTION: University of California at Davis
DATE: April 25, 2013

NAME: Montserrat Vila
POSITION: Researcher Professor
INSTITUTION: estación Biológica de Doñana (EBD-CSIC)
DATE: April 25th, 2013

NAME: Peter Vitek
POSITION: Professor
INSTITUTION: Stanford University
DATE: April 26, 2013

NAME: Kristina Vogt
POSITION: Professor and Director of FSB, School of Environmental and Forest Sciences, College of the Environment
INSTITUTION: University of Washington
DATE: 6 May 2013

NAME: Mathis Wackernagel, Ph.D.
POSITION: President, Global Footprint Network, and Visiting Professor
INSTITUTION: Cornell University
DATE: 28 April 2013

NAME: David B. Wake
POSITION: Professor of the Graduate School in Integrative Biology
INSTITUTION: University of California at Berkeley
DATE: April 25, 2013

NAME: Don Walter
POSITION: John T. Curtis Professor of Botany and Chair, Department of Botany, Biological Aspects of Conservation Major, Wisconsin Ecology
INSTITUTION: University of Wisconsin-Madison
DATE: April 26, 2013

NAME: Dr. Haydn Washington
POSITION: Visiting Fellow, Institute of Environmental Studies
INSTITUTION: University of New South Wales (Australia)
DATE: 29 April 2013

NAME: Les Watling
POSITION: Professor
INSTITUTION: University of Hawaii at Manoa
DATE: 26 April 2013

NAME: Andrew Weaver
POSITION: Lansdowne Professor and Canada Research Chair
INSTITUTION: School of Earth and Ocean Sciences, University of Victoria
DATE: April 25, 2013

NAME: Anthony LeRoy Westerling
POSITION: Associate Professor, Geography and Environmental Engineering
INSTITUTION: Sierra Nevada Research Institute, University of California, Merced
DATE: April 26, 2013

NAME: Dr Desley Whisson
POSITION: Lecturer in Wildlife and Conservation Biology
INSTITUTION: School of Life and Environmental Sciences, Deakin University
DATE: 18.05.2013
Countries (blue) from which 522 scientists have signed as of May 21, 2013. 3PM PDT